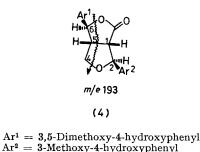

Novel Germination Inhibitors from *Aegilops ovata L*.

By RAYMOND COOPER, ELIE C. LEVY, and DAVID LAVIE*

(Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel)

Summary A synthetic approach has led to a revision of structure for the germination inhibitor of Aegilops ovata L., from which a second lignan of the same series has now been isolated and identified.

NATURALLY occurring germination inhibitors are attracting increasing attention;^{1,2} particularly those of cinnamic acid origin are already established as having such a biological activity.² Earlier a novel lignan[†] containing this C_6 - C_3 unit had been isolated from *Aegilops ovata L*. and found to be a potent germination inhibitor in the presence of light.³ Subsequently similar lignans have been reported.⁴ Since controversy over the proposed structures has recently arisen,⁵ we report evidence leading to the revised structure as a consequence of independent synthesis.



Ar = 3-Methoxy-4-hydroxyphenyl

The 2,6-biaryl structure instead of the 2,4-biaryl pattern became apparent from the oxidative phenolic coupling⁶ of ferulic acid with coniferyl alcohol. Three compounds were isolated, two of which [(1) and (2)] were the expected

† The first naturally occurring lignan containing both an ether and a lactone.

products.^{7,8} The epoxy-lactone (3) was identical in all respects to the naturally occurring compound, both having the same i.r., n.m.r., and mass spectra as well as identical $R_{\rm f}$ on t.l.c. Both acetylated products had m.p. (and mixed m.p.) 166—168 °C. Reassignment of the stereo-chemistry of the hydrogen atoms as being axial at C-1 and C-5, and equatorial at C-2 and C-6 is in agreement with data for related compounds,^{4,5} based on the coupling constants $J_{1\cdot2} = J_{5\cdot6} = 3\cdot5$ Hz. Hence the same stereochemistry can be assigned to (1)⁵ ($J_{1\cdot2} = J_{5\cdot6} = 3\cdot5$ Hz) and (2)⁷ ($J_{1\cdot2} = J_{5\cdot6} = 2$ Hz). The ¹H and ¹³C n.m.r. and the mass spectral data are in good agreement with a reported epoxylactone prepared from a known related compound.⁶ From decoupling experiments (Bruker WH-270 instrument), H-2 can now be assigned the signal at δ 5·28 and H-6 at 5·27.

Together with (3), a new epoxy-lignanolide from Aegilops ovata L. has been isolated and given the structure (4), $C_{21}H_{22}O_8$, v_{max} (KBr) 1775 cm⁻¹; λ_{max} (MeOH) 236 and 290 nm; ¹H n.m.r. spectrum (270 MHz, CDCl₃) δ 3·27 (1H, m, H-5), 3·47 (1H, dd, J 9 and 3·5 Hz, H-1), 3·82 (6H, s, 2 × OMe), 3·84 (3H, s, -OMe), 4·15 (1H, dd, J 10 and 4 Hz, H-4), 4·32 (1H, dd J 10 and 6 Hz, H-4), 5·27 (1H, br d, J 3·5

Hz, H-6), 5.29 (1H, br d, J 3.5 Hz, H-2), 6.48 (2H, s,

Ar¹-H), and 6.96 (3H, s, Ar²-H). Irradiation at δ 6.96 caused a narrowing of the signal for H-2 due to collapse of long-range coupling with the Ar² protons whereas irradiation at δ 6.48 caused narrowing only at H-6. This suggested that the third OMe group can only be in the

Ar¹ ring and mass spectral evidence confirmed the above observations; m/e (M^+) 402 (90%), 193 (22), 167 (100), and 151 (70).

(Received, 28th July 1977; Com. 779.)

- ¹ D. Gross, Phytochemistry, 1975, 14, 2105.

- ¹ D. Gross, Phytochemistry, 1975, 14, 2105.
 ² C. F. Van Sumere, J. Cottenie, J. de Greef, and J. Kint, Recent Adv. Phytochemistry, 1972, 4, 165.
 ³ D. Lavie, E. C. Levy, A. Cohen, M. Evenari, and Y. Gutterman, Nature, 1974, 249, 388.
 ⁴ C. H. Brieskorn and H. Huber, Tetrahedron Letters, 1976, 2221.
 ⁵ A. S. Anjaneyulu, A. M. Rao, V. K. Rao, L. R. Row, A. Pelter, and R. S. Ward, Tetrahedron, 1977, 33, 133
 ⁶ W. I. Taylor and A. R. Battersby, 'Oxidative Coupling of Phenols,' Marcel Dekker, New York, 1967.
 ⁷ R. Ahmed, M. Lehrer, and R. Stevenson, Tetrahedron, 1973, 29, 3753.
 ⁸ K. V. Sarkanen and A. F. A. Wallis, J.C.S. Perkin I, 1973, 1878.